Research on Clustering Algorithm Based on Grid Density on Uncertain Data Stream

نویسندگان

  • Tang Xianghong
  • Yang Quanwei
چکیده

To solve the clustering algorithm based on grid density on uncertain data stream in adjustment cycle for clustering omissions, the paper proposed an algorithm, named GCUDS, to cluster uncertain data steam using grid structure. The concept of the data trend degree was defined to describe the grade of a data point belonging to some grid unit and the defect of information loss around grid units was removed in the GCUDS algorithm. The GCUDS algorithm obtained better results of clustering and higher time efficiency than other algorithms over uncertain data stream, through improving the traditional online clustering framework and maintaining three buffers of micro-cluster. Experimental results showed that the GCUDS algorithm could effectively cluster in different shape database and outperform existing methods in clustering quality and efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability Density Grid-based Online Clustering for Uncertain Data Streams

Most existing stream clustering algorithms adopt the online component and offline component. The disadvantage of two-phase algorithms is that they can not generate the final clusters online and the accurate clustering results need to be got through the offline analysis. Furthermore, the clustering algorithms for uncertain data streams are incompetent to find clusters of arbitrary shapes accordi...

متن کامل

DENGRIS-Stream: A Density-Grid based Clustering Algorithm for Evolving Data Streams over Sliding Window

Evolving data streams are ubiquitous. Various clustering algorithms have been developed to extract useful knowledge from evolving data streams in real time. Density-based clustering method has the ability to handle outliers and discover arbitrary shape clusters whereas grid-based clustering has high speed processing time. Sliding window is a widely used model for data stream mining due to its e...

متن کامل

Adjustable Probability Density Grid-Based Clustering for Uncertain Data Streams

Most existing traditional grid-based clustering algorithms for uncertain data streams that used the fixed meshing method have the disadvantage of low clustering accuracy. In view of above deficiencies, this paper proposes a novel algorithm APDG-CUStream, Adjustable Probability Density Grid-based Clustering for Uncertain Data Streams, which adopts the online component and offline component. In o...

متن کامل

Clustering over High-Dimensional Data Streams Based on Grid Density and Effective Dimension

Clustering algorithm based on grid and density has many excellent features. But for the highdimensional data stream, the number of grids will be increased sharply as the space dimensionality grows. To solve the defect, we propose GDH-Stream, a clustering method based on the effective dimension and grid density for high-dimensional data stream, which consists of an online component and an offlin...

متن کامل

Approximate Clustering on Data Streams Using Discrete Cosine Transform

In this study, a clustering algorithm that uses DCT transformed data is presented. The algorithm is a grid density-based clustering algorithm that can identify clusters of arbitrary shape. Streaming data are transformed and reconstructed as needed for clustering. Experimental results show that DCT is able to approximate a data distribution efficiently using only a small number of coefficients a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016